Long-term monitoring of evapotranspiration using the SEBAL algorithm and Google Earth Engine cloud computing

نویسندگان

چکیده

The geeSEBAL application estimates and displays evapotranspiration maps times series based on Landsat images global meteorological data from ERA5 Land reanalysis. Codes applications are available at https://github.com/et-brasil/geesebal https://etbrasil.org/geesebal , respectively. Accurate estimation of ( ET ) is essential for several in water resources management. models using remote sensing have flourished recent years allowing spatial temporal assessments unprecedented resolutions. This study presents geeSEBAL, a new tool automated the Surface Energy Balance Algorithm (SEBAL) simplified version CIMEC (Calibration Inverse Modeling Extreme Conditions) process endmembers selection, developed within Google Earth Engine (GEE) environment. framework introduced, case studies across multiple biomes Brazil presented by comparing daily with eddy covariance (EC) 10 flux towers. Based 224 as inputs, yielded an average root mean squared difference (RMSD) 0.67 mm day −1 when compared to EC corrected energy balance closure. Additional analyses indicate low sensitivity yielding RMSD 0.71 driven situ measurements. On other hand, we found higher algorithm selection internal calibration. For instance, adjusting percentiles tropical error that was 36% lower standard percentiles. Finally, assessed long-term effects (1984–2020) land cover changes surface fluxes use agriculture key areas Brazil, deforested Amazon irrigated crops Pampas Cerrado biomes. A comparison temperature-based (SSEBop) vegetation-based (MOD16) model also performed assess relative advantages disadvantages. analysis showed has significant potential assessment data-scarce areas, due its inputs. codes written Python JavaScript freely GitHub ). includes graphical user interface ), important advances management regional scales.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing

Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth's land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the...

متن کامل

the effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus

از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...

15 صفحه اول

Scientific Computing in the Cloud with Google App Engine

Cloud Computing as a computing paradigm recently emerged to a topic of high research interest. It has become attractive alternative to traditional computing environments, especially for smaller research groups that can not afford expensive infrastructure. Most of the research regarding scientific computing in the cloud however focused on IaaS cloud providers. Google App Engine is a PaaS cloud f...

متن کامل

Comparative analysis of remote sensing water indexes for wetland water body monitoring using Landsat images and the Google Earth Engine Platform0 (A Case study: Meighan Wetland, Iran)

Wetlands are dynamic and complex aquatic ecosystems that play an important role in the survival of many plant and animal species. This study modeled the spatio-temporal changes of the Arak Meighan wetland during 1985–2020 using the multi-temporal Landsat images. In doing so, the applicability of different satellite-derived indexes including NDVI, NDWI, MNDWI, AWEIsh , AWEInsh , and WRI was inve...

متن کامل

Investigation of land use changes in Gorganrood catchment using Google Earth Engine platform

The purpose of this study is to investigate landuse changes in Gorganrood basin in 2001, 2010 and 2019. Using Landsat and Product-Modes satellite images, used maps were prepared using the classification method of random forest algorithm in Google Earth Engine. Satellite imagery was classified into eight classes including forest, cropland, shrubland, grassland, wetland, urban, barren, and water....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Isprs Journal of Photogrammetry and Remote Sensing

سال: 2021

ISSN: ['0924-2716', '1872-8235']

DOI: https://doi.org/10.1016/j.isprsjprs.2021.05.018